Approximating Pareto curves using semidefinite relaxations
نویسندگان
چکیده
We consider the problem of constructing an approximation of the Pareto curve associated with the multiobjective optimization problem minx∈S{(f1(x), f2(x))}, where f1 and f2 are two conflicting polynomial criteria and S ⊂ Rn is a compact basic semialgebraic set. We provide a systematic numerical scheme to approximate the Pareto curve. We start by reducing the initial problem into a scalarized polynomial optimization problem (POP). Three scalarization methods lead to consider different parametric POPs, namely (a) a weighted convex sum approximation, (b) a weighted Chebyshev approximation, and (c) a parametric sublevel set approximation. For each case, we have to solve a semidefinite programming (SDP) hierarchy parametrized by the number of moments or equivalently the degree of a polynomial sums of squares approximation of the Pareto curve. When the degree of the polynomial approximation tends to infinity, we provide guarantees of convergence to the Pareto curve in L2-norm for methods (a) and (b), and L1-norm for method (c).
منابع مشابه
Convex Relaxations and Integrality Gaps
We discuss the effectiveness of linear and semidefinite relaxations in approximating the optimum for combinatorial optimization problems. Various hierarchies of these relaxations, such as the ones defined by Lovász and Schrijver [47], Sherali and Adams [55] and Lasserre [42] generate increasingly strong linear and semidefinite programming relaxations starting from a basic one. We survey some po...
متن کاملSemidefinite Approximations for Global Unconstrained Polynomial Optimization
We consider the problem of minimizing a polynomial function on R, known to be hard even for degree 4 polynomials. Therefore approximation algorithms are of interest. Lasserre [15] and Parrilo [23] have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We propose here a method for computing tight upper ...
متن کاملConverging Semidefinite Bounds for Global Unconstrained Polynomial Optimization
We consider here the problem of minimizing a polynomial function on Rn. The problem is known to be hard even for degree 4. Therefore approximation algorithms are of interest. Lasserre [11] and Parrilo [16] have proposed approximating the minimum of the original problem using a hierarchy of lower bounds obtained via semidefinite programming relaxations. We propose here a method for computing a c...
متن کاملApproximating Semidefinite Packing Programs
In this paper we define semidefinite packing programs and describe an algorithm to approximately solve these problems. Semidefinite packing programs arise in many applications such as semidefinite programming relaxations for combinatorial optimization problems, sparse principal component analysis, and sparse variance unfolding techniques for dimension reduction. Our algorithm exploits the struc...
متن کاملSemidefinite relaxation for dominating set
‎It is a well-known fact that finding a minimum dominating set and consequently the domination number of a general graph is an NP-complete problem‎. ‎In this paper‎, ‎we first model it as a nonlinear binary optimization problem and then extract two closely related semidefinite relaxations‎. ‎For each of these relaxations‎, ‎different rounding algorithm is exp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Oper. Res. Lett.
دوره 42 شماره
صفحات -
تاریخ انتشار 2014